9 research outputs found

    Differential Gene Expression at Coral Settlement and Metamorphosis - A Subtractive Hybridization Study

    Get PDF
    A successful metamorphosis from a planktonic larva to a settled polyp, which under favorable conditions will establish a future colony, is critical for the survival of corals. However, in contrast to the situation in other animals, e.g., frogs and insects, little is known about the molecular basis of coral metamorphosis. We have begun to redress this situation with previous microarray studies, but there is still a great deal to learn. In the present paper we have utilized a different technology, subtractive hybridization, to characterize genes differentially expressed across this developmental transition and to compare the success of this method to microarray.\ud \ud Methodology/Principal Findings\ud \ud Suppressive subtractive hybridization (SSH) was used to identify two pools of transcripts from the coral, Acropora millepora. One is enriched for transcripts expressed at higher levels at the pre-settlement stage, and the other for transcripts expressed at higher levels at the post-settlement stage. Virtual northern blots were used to demonstrate the efficacy of the subtractive hybridization technique. Both pools contain transcripts coding for proteins in various functional classes but transcriptional regulatory proteins were represented more frequently in the post-settlement pool. Approximately 18% of the transcripts showed no significant similarity to any other sequence on the public databases. Transcripts of particular interest were further characterized by in situ hybridization, which showed that many are regulated spatially as well as temporally. Notably, many transcripts exhibit axially restricted expression patterns that correlate with the pool from which they were isolated. Several transcripts are expressed in patterns consistent with a role in calcification.\ud \ud Conclusions\ud \ud We have characterized over 200 transcripts that are differentially expressed between the planula larva and post-settlement polyp of the coral, Acropora millepora. Sequence, putative function, and in some cases temporal and spatial expression are reported

    Symptom-based stratification of patients with primary Sjögren's syndrome: multi-dimensional characterisation of international observational cohorts and reanalyses of randomised clinical trials

    Get PDF
    Background Heterogeneity is a major obstacle to developing effective treatments for patients with primary Sjögren's syndrome. We aimed to develop a robust method for stratification, exploiting heterogeneity in patient-reported symptoms, and to relate these differences to pathobiology and therapeutic response. Methods We did hierarchical cluster analysis using five common symptoms associated with primary Sjögren's syndrome (pain, fatigue, dryness, anxiety, and depression), followed by multinomial logistic regression to identify subgroups in the UK Primary Sjögren's Syndrome Registry (UKPSSR). We assessed clinical and biological differences between these subgroups, including transcriptional differences in peripheral blood. Patients from two independent validation cohorts in Norway and France were used to confirm patient stratification. Data from two phase 3 clinical trials were similarly stratified to assess the differences between subgroups in treatment response to hydroxychloroquine and rituximab. Findings In the UKPSSR cohort (n=608), we identified four subgroups: Low symptom burden (LSB), high symptom burden (HSB), dryness dominant with fatigue (DDF), and pain dominant with fatigue (PDF). Significant differences in peripheral blood lymphocyte counts, anti-SSA and anti-SSB antibody positivity, as well as serum IgG, κ-free light chain, β2-microglobulin, and CXCL13 concentrations were observed between these subgroups, along with differentially expressed transcriptomic modules in peripheral blood. Similar findings were observed in the independent validation cohorts (n=396). Reanalysis of trial data stratifying patients into these subgroups suggested a treatment effect with hydroxychloroquine in the HSB subgroup and with rituximab in the DDF subgroup compared with placebo. Interpretation Stratification on the basis of patient-reported symptoms of patients with primary Sjögren's syndrome revealed distinct pathobiological endotypes with distinct responses to immunomodulatory treatments. Our data have important implications for clinical management, trial design, and therapeutic development. Similar stratification approaches might be useful for patients with other chronic immune-mediated diseases. Funding UK Medical Research Council, British Sjogren's Syndrome Association, French Ministry of Health, Arthritis Research UK, Foundation for Research in Rheumatology

    Para-infectious brain injury in COVID-19 persists at follow-up despite attenuated cytokine and autoantibody responses

    Get PDF
    To understand neurological complications of COVID-19 better both acutely and for recovery, we measured markers of brain injury, inflammatory mediators, and autoantibodies in 203 hospitalised participants; 111 with acute sera (1–11 days post-admission) and 92 convalescent sera (56 with COVID-19-associated neurological diagnoses). Here we show that compared to 60 uninfected controls, tTau, GFAP, NfL, and UCH-L1 are increased with COVID-19 infection at acute timepoints and NfL and GFAP are significantly higher in participants with neurological complications. Inflammatory mediators (IL-6, IL-12p40, HGF, M-CSF, CCL2, and IL-1RA) are associated with both altered consciousness and markers of brain injury. Autoantibodies are more common in COVID-19 than controls and some (including against MYL7, UCH-L1, and GRIN3B) are more frequent with altered consciousness. Additionally, convalescent participants with neurological complications show elevated GFAP and NfL, unrelated to attenuated systemic inflammatory mediators and to autoantibody responses. Overall, neurological complications of COVID-19 are associated with evidence of neuroglial injury in both acute and late disease and these correlate with dysregulated innate and adaptive immune responses acutely

    GEI-16 : a novel component of the C. elegans fibrous organelle

    No full text
    Animal tissues are maintained by the correct cell-cell contacts and cellular shape. Cell shape and associations are governed by the combined action of the filament cytoskeleton in association with adhesion complexes. Desmosomes and hemidesmosomes are one such class of adhesion complex. From worms to humans epithelial tissues are flattened and made resistant to mechanical stress by desmosomes and hemidesmosomes. These membrane-associated junction complexes are attached to the intermediate filaments (IFs), the strongest and most elastic of the cytoskeletal filaments. In Caenorhabditis elegans, a requirement for the hemidesmosomes first becomes apparent in embryonic morphogenesis. Without functioning hemidesmosomes elongation arrests at the two-fold stage and the embryo never attains its vermiform shape (four-fold elongation). Characterisation of the loss of larva-specific intermediate filaments has shown that functional hemidesmosomes are necessary for tissue integrity and the continued development of the worm at all stages. It appears that, as in other animals, hemidesmosomes maintain a squamified epithelium which resists and equalises shearing forces generated during morphogenetic and locomotive movement. This thesis discusses the discovery of GEI-16 (PAT-12), a new component of the hemidesmosome and fibrous organelle (FO) in C. elegans. Discovered in a screen for uncharacterised, pan-nematode genes with vital functions, GEI-16 is necessary for all life stages. Loss of gei-16 leads to paralysis, muscle detachment and developmental arrest during the elongation step of embryogenesis. The same phenotype occurs in all stages of development if gei-16 is lacking. GEI-16 is likely to function with VAB-10 and the actin cytoskeleton to organise and strengthen the fibrous organelle during elongation

    PAT-12, a potential anti-nematode target, is a new spectraplakin partner essential for Caenorhabditis elegans hemidesmosome integrity and embryonic morphogenesis

    No full text
    Caenorhabditis elegans embryonic elongation depends on both epidermal and muscle cells. The hemidesmosome-like junctions, commonly called fibrous organelles (FOs), that attach the epidermis to the extracellular matrix ensure muscle anchoring to the cuticular exoskeleton and play an essential role during elongation. To further define how hemidesmosomes might control elongation, we searched for factors interacting with the core hemidesmosome component, the spectraplakin homolog VAB-10. Using the VAB-10 plakin domain as bait in a yeast two-hybrid screen, we identified the novel protein T17H7.4. We also identified T17H7.4 in an independent bioinformatic search for essential nematode-specific proteins that could define novel anti-nematode drug or vaccine targets. Interestingly, T17H7.4 corresponds to the C. elegans equivalent of the parasitic OvB20 antigen, and has a characteristic hemidesmosome distribution. We identified two mutations in T17H7.4, one of which defines the uncharacterized gene pat-12, previously identified in screens for genes required for muscle assembly. Using isoform-specific GFP constructs, we showed that one pat-12 isoform with a hemidesmosome distribution can rescue a pat-12 null allele. We further found that lack of pat-12 affects hemidesmosome integrity, with marked defects at the apical membrane. PAT-12 defines a novel component of C. elegans hemidesmosomes, which is required for maintaining their integrity. We suggest that PAT-12 helps maintaining VAB-10 attachment with matrix receptors

    Services for children with autism spectrum disorder in three, large urban school districts: Perspectives of parents and educators

    No full text
    This study used qualitative methods to evaluate the perceptions of parents, educators, and school administrators in three large, urban school districts (Los Angeles, Philadelphia, and Rochester) regarding services for children with autism spectrum disorder within the context of limited district resources. Facilitators followed a standard discussion guide that contained open-ended questions regarding participants’ views on strengths and limitations of existing services and contextual factors that would facilitate or inhibit the process of introducing new interventions. Three primary themes were identified: (1) tension between participant groups (teachers and paraprofessionals, staff and administration, teachers and parents, special education and general education teachers), (2) necessity of autism spectrum disorder–specific and behavioral training for school personnel, and (3) desire for a school culture of accepting difference. These themes highlight the importance of developing trainings that are feasible to deliver on a large scale, that focus on practical interventions, and that enhance communication and relationships of school personnel with one another and with families
    corecore